\qquad		
Grade: - XI	Set A	Full Marks:-75
Stream: Science		Pass Marks:-30
Subject: - Mathematics		Time : 3hrs

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate the full marks.

Group $A(\mathbf{1} \times \mathbf{1 1}=\mathbf{1 1})$

Select the best alternative.

1. If i denones the imaginary unit then $\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\frac{1}{i^{4}}$ equals
a) -1
b) 1
c) $-i$
d) i
2. If AM, GM and HM be arithmetic, geometric and harmonic mean respectively, the correct option is
a) $\mathrm{AM}>\mathrm{HM}>\mathrm{GM}$
b) $\mathrm{AM}>\mathrm{GM}>\mathrm{HM}$
c) $\mathrm{AM}<\mathrm{GM}<\mathrm{HM}$
d) $\mathrm{HM}<\mathrm{AM}<\mathrm{GM}$
3. If A be a square matrix and $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}}$ for all i, j then A is called
a) Identity matrix
b) triangular matrix
c) symmetric matrix
d) skew-symmetric matrix
4. A square matrix A is called a non-singular matrix if
a) $|A|=0$
b) $|A| \neq 0$
c) $|A|=1$
d) $|\mathrm{A}| \neq 1$.
5. The square of the standard deviation is known as
a) coefficient of varianace
b) variance
c) coefficient of standard deviarion
d) mean deviation
6. Skewness of a distribution is positive if
a) Mean > Median > Mode
b) Mode < Mean < Median
c) Mean > Mode > Median
d) Mean $=$ Median $=$ Mode
7. The discriminant of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is
a) $4 a b c-a^{2}$
b) $4 a c-b^{2}$
c) $b^{2}-4 a c$
d) $4 b c-a^{2}$

8 The length of perpendicular from $(0,0)$ to the straight line $3 x+4 y+5=0$ is
a) 1
b) 2
c) 3
d) 4
9. The points of discontinuity of the function $\mathrm{f}(\mathrm{x})=\frac{x+1}{(x-2)(x-3)}$ are
a) $-1,2,3$
b) $0,2,3$
c) 2,3
d) $-2,-3$
10. For what value of $\mathrm{p}, \lim _{x \rightarrow 0} \frac{\operatorname{sinpx}}{x}=4$?
a) $p=0$
b) $p=1$
c) $p=4$
d) $p=12$
11. For all ratioinal values of $\mathrm{n}, \lim _{n \rightarrow a} \frac{x^{n}-a^{n}}{x-a}$ equals to
a). $a x^{n-1}$
b). $\mathrm{x}^{\mathrm{n}-1}$
c) $n a^{n-1}$
d) 1
12. a) Find the square roots of $7-24 i$
b) If $\mathrm{x}-\mathrm{iy}=\sqrt{\frac{1-i}{1+i}}$, prove that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
13. Using the properties of determinant, show that

$$
\left|\begin{array}{ccc}
1+a_{1} & a_{2} & a_{3} \\
a_{1} & 1+a_{2} & a_{3} \\
a_{1} & a_{2} & 1+a_{3}
\end{array}\right|=1+a_{1}+a_{2}+a_{3}
$$

14. a) Define limit of a function. Give some examples of indeterminant forms [1+1]
b) Evaluate : $\lim _{x \rightarrow \theta} \frac{x \cos \theta-\theta \cos x}{x-\theta}$
15. If the equations $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$ and $\mathrm{x}^{2}+\mathrm{qx}+\mathrm{p}=0$ have a common root, prove that either $\mathrm{p}=\mathrm{q}$ or $\mathrm{p}+\mathrm{q}+1=0$.
16. Define continuity of a function at a point. A function is defined by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}
2 x-3 & \text { for } & x<2 \\
2 & \text { for } & x=2 \\
3 x-5 & \text { for } & x>2
\end{array}\right. \text {. Is the function continuous at 2? }
$$

If not, how the function can be made continuous? $\quad[1+3+1]$
17 Find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$
18. Calculate Karl Pearson's coefficient of skewness from the following data.

Weight (kg)	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of persons	5	10	15	8	2

19. Following are the marks obtained by the students X and Y in 6 tests of 100 marks each

X	56	72	48	69	64	81
Y	63	74	45	57	82	63

If consistency of the performance is the criteria for awarding, who should get the prize?

$$
\begin{equation*}
\text { Group C[} 8 \times 3=24] \tag{2}
\end{equation*}
$$

20. (a) Find the multiplicative inverse of $2+5 \mathrm{i}$
(b If H be the HM between a and b , prove that: $\frac{1}{H-a}+\frac{1}{H-b}=\frac{1}{a}+\frac{1}{b}$
(c) Find the sum of the series $\frac{3}{5}+\frac{4}{5^{2}}+\frac{3}{5^{3}}+\frac{4}{5^{4}}+\frac{3}{5^{5}}+\frac{4}{5^{6}}+\ldots \ldots$.
21. a)If two coins are tossed once, find the probability of getting at least one tails
b) If roots of the equation $x^{2}+a x+c=0$ differ by 1 , prove that $a^{2}=4 c+1$.
c)) Form the quadratic equation whose one root is $2+\sqrt{3} i$
[2]
22 (a) Evaluate $\lim _{x \rightarrow 2} \frac{x-\sqrt{8-x^{2}}}{\sqrt{x^{2}+12}-4} \quad$ ii) $\lim _{x \rightarrow 0} \frac{e^{b x}-e^{a x}}{x}$
(b) For what of value of k the function $f(x)=\left\{\begin{array}{l}k x+3, \\ 3 x-1, \\ 3 x<2\end{array}\right.$ is continuous at
(b) For what of value of k the function $f(x)=\left\{\begin{array}{l}k x+3, x \geq 2 \\ 3 x-1, x<2\end{array}\right.$ is continuous at

$$
\begin{equation*}
x=2 ? \tag{3}
\end{equation*}
$$

$\left.\begin{array}{|lcc|}\hline & \text { The Times Secondary School } \\ \text { Dillibazar, Kathmandu }\end{array}\right]$

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate the full marks.

Group $\mathbf{A}(\mathbf{1} \times \mathbf{1 1}=\mathbf{1 1})$

Select the best alternative.

1. If i denones the imaginary unit then $i^{4 n+3}$ equals
a) -1
b) 1
c) -i
d) i
2. If a, b and c be in harmonic progression, then
a) $b=a c$
b) $\mathrm{b}=\sqrt{a c}$
c) $\mathrm{b}=\frac{a+c}{2}$
d) $\mathrm{b}=\frac{2 a c}{a+c}$
3. If A be a square matrix and $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$ for all i, j, then A is called
a) Identity matrix
b) triangular matrix
c) symmetric matrix
d) skew-symmetric matrix
4. A square matrix A is called a singular matrix if
a) $|\mathrm{A}|=0$
b) $|A| \neq 0$
c) $|A|=1$
d) $|A| \neq 1$.
5. The coefficient of variation (C.V.) is defined by
b) $\frac{\sigma}{\bar{x}}$
b) $\frac{\sigma}{\bar{x}} \times 100$
c) $\frac{\bar{x}}{\sigma}$
d) $\frac{\bar{x}}{\sigma} \times 100$
6. A frequency distribution is said to be symmetrical if
a) Mean > Median > Mode
b) Mode < Mean < Median
c) Mean > Mode > Median
d) Mean $=$ Median $=$ Mode
7. The length of perpendicular from $(0,0)$ to the straight line $3 x+4 y+10=0$ is
a) 1
b) 2
c) 3
d) 4
8. The points of discontinuity of the function $\mathrm{f}(\mathrm{x})=\frac{x+2}{(x-1)(x-3)}$ are
a) $1,-2,3$
b) 1,3
c) $1,2,3$
d) $-1,-3$
9. For what value of $k, \lim _{x \rightarrow 0} \frac{\log _{e}(1+k x)}{x}=1$?
a) $k=0$
b) $\mathrm{k}=-1$
c) $\mathrm{k}=1$
d) $k=2$
10. $\lim _{\theta \rightarrow 0} \frac{\sin \sqrt{\theta}}{\sqrt{\sin \theta}}$ equals
a) $\frac{0}{0}$
b) 0
c) 1
d) $\sqrt{\theta}$

Group B [$5 \times 8=30]$

12. a) Find the square roots of $3-4 i$
b) If $\mathrm{x}-\mathrm{iy}=\frac{2-3 i}{2+3 i}$, prove that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
13. Using the properties of determinant, show that

$$
\left|\begin{array}{ccc}
x & y & z \tag{2}\\
x^{2} & y^{2} & z^{2} \\
y z & z x & x y
\end{array}\right|=(x-y)(y-z)(z-x)(y z+z x+x y)
$$

14. Define continuity of a function at a point. Let a function $\mathrm{f}(x)$ be defined by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}
2 x+1 & \text { if } & x<1 \\
2 & \text { if } & x=1 \\
3 x & \text { if } & x>1
\end{array}\right.
$$

Is the function continuous at $x=1$?

If not, how can you make it continuous at the point ?

$$
[1+3+1]
$$

15. If the equations $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$ and $\mathrm{x}^{2}+\mathrm{qx}+\mathrm{p}=0$ have a common root, prove that either $\mathrm{p}=\mathrm{q}$ or $\mathrm{p}+\mathrm{q}+1=0$.
16. Find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 6 \\ 1 & 3 & 2\end{array}\right)$
17. a) Define limit of a function. Give some examples of indeterminant forms
b) Evaluate: $\lim _{x \rightarrow \theta} \frac{x \sin \theta-\theta \sin x}{x-\theta}$.
18. Calculate Karl Pearson's coefficient of skewness from the following data

Wage (Rs '000")	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of persons	3	8	10	7	2

19. Following are the runs scored by two batsmen A and B in six different innings.

A	72	76	67	65	64	75
B	55	67	59	57	52	63

If consistency of the performance is the criteria for awarding the medal, who should be awarded?

$$
\text { Group } C[8 \times 3=24]
$$

20. a) Find the multiplicative inverse of $\frac{3+i}{3-i}$.
b) If G be the GM between a and b, prove that: $\frac{1}{G^{2}-a^{2}}+\frac{1}{G^{2}-b^{2}}=\frac{1}{G^{2}}$
(c) Find the sum of the series $\frac{3}{5}+\frac{4}{5^{2}}+\frac{3}{5^{3}}+\frac{4}{5^{4}}+\frac{3}{5^{5}}+\frac{4}{5^{6}}+\ldots \ldots$.
21. a) If roots of the equation $x^{2}+a x+c=0$ differ by 1 , prove that $a^{2}=4 c+1$. [3]
b) Form the quadratic equation whose one root is $4+2 \mathrm{i}$
c) If two coins are tossed once, find the probability of getting both tails.
22. a) Evaluate i) $\lim _{x \rightarrow 0} \frac{e^{x}-\sin x-1}{x}$ ii $\lim _{x \rightarrow 2} \frac{x-\sqrt{2-x^{2}}}{2 x-\sqrt{2+2 x^{2}}}$
(b) For what of value of k the function $f(x)=\left\{\begin{array}{cc}x^{2}-1, & x \geq 3 \\ 2 k x, & x<3\end{array}\right.$ is continuous at $\mathrm{x}=3$?
