🧼 The Ti	mes Secondary Schoo	ol
The Times an 180 D	illibazar, Kathmandu	
IN I'L COLLEGIZA College First Te	rminal Examination – 2080)
Grade: - XI	Set A	Full Marks:-75
Stream: Science		Pass Marks:-30
Subject: - Mathematics		Time : 3hrs
Subject. Multemates		
Candidates are required to giv	e their answers in their ow	n words as far as
practicable. The figures in the ma	rgin indicate the full marks.	
Gr	x = 11 = 11	
Select the best alternative.	1 1 1 1	
1. If <i>i</i> denones the imaginary uni	it then $\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}$ equals	
a) -1 b) 1	c) <i>-i</i>	d) <i>i</i>
2. If AM, GM and HM be arithme	etic, geometric and harmonic me	ean respectively, the
correct option is		-
a) $AM > HM > GM$	b) $AM > GM > HN$	1
c) AM < GM < HM	d) HM <am<gm< td=""><td></td></am<gm<>	
3. If A be a square matrix and a_{ij} =	$= a_{ji}$ for all 1, J then A is called	
a) Identity matrix	b) triangular matrix	. •
c) symmetric matrix	d) skew-symmetric r	natrix
4. A square matrix A is called a no	on-singular matrix if	
a) $ \mathbf{A} = 0$ b) $ \mathbf{A} = 0$	$\begin{array}{ll} A \neq 0 & c \\ A = 1 \\ A = 1 \end{array}$	$d) A \neq 1.$
5. The square of the standard devia	ation is known as	
a) coefficient of varianace	b) variance	
6 Skowpoor of a distribution is no	citive if	
a) Maan > Madian > Mada	b) Mode < Meen <	Modian
a) Mean $>$ Mode $>$ Median	d) Mean – Median	– Mode
7 The discriminant of the quadrat	ic equation $ax^2 + bx + c = 0$ is	- Mode
7. The discriminant of the quadrat a) $4abc - a^2$ b)	$4ac - b^2$ c) $b^2 - 4ac$	d) $4bc - a^2$
8 The length of perpendicular from	(0, 0) to the straight line $3x + 1$	4y + 5 = 0 is
a) 1 b) 2	2 c) 3	d) 4
9 The points of discontinuity of t	he function $f(x) = \frac{x+1}{x+1}$ are	-/ ·
. The points of discontinuity of the	(x-2)(x-3)	
a) $-1, 2, 3$ b) (), 2, 3 c) 2, 3	d) -2, -3
10. For what value of p, $\lim_{x \to 0} \frac{3\pi}{2}$	$\frac{dp_x}{r} = 4$?	
a) $p = 0$ b) $p = 0$	p = 1 c) $p = 4$	d) p = 12
11. For all ratioinal values of n, lir	$n_{n \to a} \frac{x^n - a^n}{m}$ equals to	
a) ax^{n-1} b) x	x^{n-1} c) na^{n-1}	d) 1
Gr	$roup B [5 \times 8 = 30]$	u) 1
12. a) Find the square roots of 7 - 2	24i	[3]
b) If x - iy = $\sqrt{\frac{1-i}{1+i}}$, prove that	$t x^2 + y^2 = 1$	[2]

13.	Using the j	properties	of deter	minant,	show	that
	$11 \perp a$	a	a			

$1 + a_1$	a_2	a_3				
<i>a</i> ₁	$1 + a_2$	<i>a</i> ₃	= 1 +	$a_1 + $	<i>a</i> ₂ +	a_3
$ a_1 $	a_2	$1 + a_3$	l I			
Define 1	mit of o fu	nation (1:			ofindata

- 14. a) Define limit of a function. Give some examples of indeterminant forms [1+1]b) Evaluate : $\lim_{x \to \theta} \frac{x \cos \theta - \theta \cos x}{x - \theta}$ [3]
- 15. If the equations $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a common root, prove that either p = q or p + q + 1 = 0.
- 16. Define continuity of a function at a point. A function is defined by

$$f(x) = \begin{cases} 2x - 3 & for & x < 2\\ 2 & for & x = 2\\ 3x - 5 & for & x > 2 \end{cases}$$
 Is the function continuous at 2 ?
If not, how the function can be made continuous ?
$$[1 + 3 + 1]$$

17 Find the inverse of the matrix A $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1

18. Calculate Karl Pearson's coefficient of skewness from the following data.

Weight(kg)	40-50	50-60	60-70	70-80	80-90
No. of persons	5	10	15	8	2

19. Following are the marks obtained by the students X and Y in 6 tests of 100 marks each

Х	56	72	48	69	64	81
Y	63	74	45	57	82	63

If consistency of the performance is the criteria for awarding, who should get the prize?

Group C[$8 \times 3 = 24$]

- 20. (a) Find the multiplicative inverse of 2 + 5i[2] (b If H be the HM between a and b, prove that: $\frac{1}{H-a} + \frac{1}{H-b} = \frac{1}{a} + \frac{1}{b}$ (c) Find the sum of the series $\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \frac{3}{5^5} + \frac{4}{5^6} + \dots$ [3]
- [3] 21. a)If two coins are tossed once, find the probability of getting at least one tails
- - [2] b) If roots of the equation $x^2 + ax + c = 0$ differ by 1, prove that $a^2 = 4c + 1$. [3] c)) Form the quadratic equation whose one root is $2 + \sqrt{3}i$ [2] [2]

22 (a) Evaluate
$$\lim_{x \to 2} \frac{x - \sqrt{8 - x^2}}{\sqrt{x^2 + 12} - 4}$$
 ii) $\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x}$ [3+2]

(b) For what of value of k the function
$$f(x) =\begin{cases} xx + 3, x \ge 2\\ 3x - 1, x < 2 \end{cases}$$
 is continuous at $x = 2?$ [3]

The End

The Times Secondary School					
The Times 10180	Dillibazar, Kathmand	lu			
First Terminal Examination – 2080					
Grade: - XI	Set B	Full Marks:-75			
Stream: Science	9	Pass Marks:-30			
Subject: - Mathe	ematics	Time : 3hrs			

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate the full marks.

Group A $(1 \times 11 = 11)$ Select the best alternative. 1. If *i* denotes the imaginary unit then i^{4n+3} equals b) 1 d) i a) -1 c) -i 2. If a, b and c be in harmonic progression, then b) $b = \sqrt{ac}$ c) $b = \frac{a+c}{2}$ d) b = $\frac{2ac}{a+c}$ a) b = ac3. If A be a square matrix and $a_{ii} = -a_{ii}$ for all i, j, then A is called a) Identity matrix b) triangular matrix c) symmetric matrix d) skew-symmetric matrix 4. A square matrix A is called a singular matrix if a) |A| = 0b) $|\mathbf{A}| \neq 0$ c) |A| = 1d) $|\mathbf{A}| \neq 1$. 5. The coefficient of variation (C.V.) is defined by b) $\frac{\sigma}{\bar{x}} \times 100$ c) $\frac{\bar{x}}{z}$ d) $\frac{\bar{x}}{z} \times 100$ b) $\frac{\sigma}{\bar{r}}$ 6. A frequency distribution is said to be symmetrical if a) Mean > Median > Mode b) Mode < Mean < Median c) Mean > Mode > Median d) Mean = Median = Mode 8. The length of perpendicular from (0, 0) to the straight line 3x + 4y + 10 = 0 is b) 2 a) 1 c) 3 d) 4 9. The points of discontinuity of the function $f(x) = \frac{x+2}{(x-1)(x-3)}$ are a) 1, -2, 3 b) 1, 3 c) 10. For what value of k, $\lim_{x \to 0} \frac{\log_e(1+kx)}{x} = 1$? a) 1, -2, 3 b) 1, 3 c) 1, 2, 3 d) -1, -3 c) k = 1 a) k = 0b) k = -1d) k = 211. $\lim_{\theta \to 0} \frac{\sin \sqrt{\theta}}{\sqrt{\sin \theta}}$ equals a) $\frac{0}{0}$ c) 1 d) $\sqrt{\theta}$ b) 0 Group B [$5 \times 8 = 30$] 12. a) Find the square roots of 3-4i b) If x - iy = $\frac{2-3i}{2+3i}$, prove that $x^2 + y^2 = 1$ 13. Using the properties of determinant, show that $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ yz & zx & xy \end{vmatrix} = (x-y)(y-z)(z-x)(yz + zx + xy)$

14. Define continuity of a function at a point. Let a function f(x) be defined by

[3]

[2]

 $f(x) = \begin{cases} 2x+1 & if \quad x < 1 \\ 2 & if \quad x = 1 \\ 3x & if \quad x > 1 \end{cases}$ Is the function continuous at x=1? If not, how can you make it continuous at the point? [1+3+1]15. If the equations $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a common root, prove that either p = q or p + q + 1 = 0. 16. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 6 \\ 1 & 2 & 2 \end{pmatrix}$ 17. a) Define limit of a function. Give some examples of indeterminant forms [1+1]b) Evaluate: $\lim_{x\to\theta} \frac{x\sin\theta - \theta\sin x}{x - \theta}$. [3] 18. Calculate Karl Pearson's coefficient of skewness from the following data 30-40 Wage (Rs '000") 10-20 20-30 40-50 50-60No. of persons 3 8 10 7 2 19. Following are the runs scored by two batsmen A and B in six different innings. 75 Α 72 76 67 65 64 В 55 67 57 63 59 52 If consistency of the performance is the criteria for awarding the medal, who should be awarded? Group C[$8 \times 3 = 24$] 20. a) Find the multiplicative inverse of $\frac{3+i}{2-i}$. [2] b) If G be the GM between a and b, prove that: $\frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2} = \frac{1}{G^2}$ (c) Find the sum of the series $\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \frac{3}{5^5} + \frac{4}{5^6} + \dots$ [3] [3] 21. a) If roots of the equation $x^2 + ax + c = 0$ differ by 1, prove that $a^2 = 4c + 1$. [3] b) Form the quadratic equation whose one root is 4 + 2i[3] c) If two coins are tossed once, find the probability of getting both tails. [2] 22. a) Evaluate i) $\lim_{x \to 0} \frac{e^x - \sin x - 1}{x}$ ii $\lim_{x \to 2} \frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}}$ [2+3](b) For what of value of k the function $f(x) = \begin{cases} x^2 - 1, & x \ge 3 \\ 2kx, & x < 3 \end{cases}$ is continuous at x = 3? [3]

