The Times Secondary School		
Grade: - XII	Set A	Full Marks:-75
Stream: Science		Pass Marks:-30
Subject: - Mathematics		Time: 3hrs

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate the full marks.

Group-A $[11 \times 1=11]$

Rewrite the correct option in your answer sheet.

1. How many odd numbers of three different digits can be formed from the integers $1,2,3$, 4 and 5?
a) 12
b) 36
c) 60
d) 120
2. The middle term in the expansion of $\left(x-\frac{1}{x}\right)^{20}$ is
a) $\mathrm{C}(20,10)$
b) - $\mathrm{C}(20,10)$
c) $C(20,10) x$
d) $C(20,10) x^{10}$
3. Sum of the first n natural numbers is
a) n^{2}
b) $\frac{n(n+1)(2 n+1)}{}$
c) $\frac{n(n+1)}{2}$
d) $\left(\frac{n(n+1)}{2}\right)^{2}$
4. The radius of the circle $x^{2}+y^{6}+4 x-6 y+4=0$ is
a) 2
b) 3
c) 4
d) 9
5. For what value of p, do the system of equations $2 x+3 y=1,4 x+6 y=p$ have infinite solutions?
a) 0
b) 1
c) 2
d) 4
6. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 5 x}{\tan x}$ equals
a) $\frac{1}{5}$
b) $-\frac{1}{5}$
c) $\frac{5}{7}$
d) $-\frac{1}{7}$
7. The derivative of $\operatorname{Arc} \tan \sinh x$ is
a) $\cosh x$
b) $\sinh x$
c) $\tanh x$
d) $\operatorname{sech} x$
8. The integral value of $\int \frac{d x}{a^{2}-x^{2}}$ is
a) $\frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right)+\mathrm{c}$
b) $\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
c) $\log \left(x+\sqrt{a^{2}-x^{2}}\right)+c$
d) $\sin ^{-1} \frac{x}{a}+c$
9. If the regression coefficients are $\mathrm{b}_{\mathrm{xy}}=-\frac{1}{3}$ and $\mathrm{b}_{\mathrm{yx}}=-\frac{3}{4}$, the correlation coefficient between two vriables x and y is
a) 0.25
b) -.0 .25
c) 0.50
d) -0.50
10. If α and β be two complex roots of unity then α^{2} equals
a) 1
b) 0
c) α
d) β
11. For two dependent events A and $B, P(A / B)$ equals
a) $\frac{P(A \cap B)}{P(A)}$
b) $P(A) P(B)$
c) $\frac{P(A \cap B)}{P(B)}$
d) $\frac{P(A)}{P(A \cap B)}$

Group ' \mathbf{B} ' $[\mathbf{5} \times \mathbf{8}=\mathbf{4 0}$]

12. (a) In how many ways can the letters of the word 'INTERVAL' be arranged so that the vowels may occupy only the odd positions?
b) A candidate has to pass in each of the five subjects. In how many ways can he be fail?
13. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots \ldots \ldots+C_{n} x^{n}$,
a) Write the value of
i) $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \ldots .+\mathrm{C}_{\mathrm{n}}$
ii) $\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots \ldots . .+\mathrm{nC}_{n}$
b) Prove that. $\mathrm{C}_{0}+4 \mathrm{C}_{1}+7 \mathrm{C}_{2}+10 \mathrm{C}_{3}+\ldots \ldots .+(3 n+1) \mathrm{C}_{\mathrm{n}}=(3 \mathrm{n}+2) 2^{\mathrm{n}-1}$
14. Solve the system of equations: $x-y+2 z=0, \quad x-2 y+3 z=-1,2 x-2 y+z=-3$ by Row-equivalent matrix method or Cramar's Rule.
15. Find the regression equation of x on y from the following data from the following data

X	5	9	13	17	21
Y	3	8	13	18	23

Estimate th value of x when $\mathrm{y}=18$.
16. Solve the following LP Problem, using simplex method

Maximize $\mathrm{Z}=7 \mathrm{x}+5 \mathrm{y}$ subject to $x+2 y \leq 6,4 x+3 y \leq 12, x, y \geq 0$.
17.i) Define L'Hospital's Rule and use it to evaluate $\lim _{x \rightarrow \theta} \frac{x \sin \theta-\theta \sin x}{x-\theta}$
ii) Find the derivative of $\tanh x^{\operatorname{sech} x}$
18. a) Write the equation of tangent to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at piont $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in differential form.
b) Define the angle of intersections between two curves.
b) Find the point on the curve $y=2 x^{2}+3 x+5$, the tangent at which is perpendicular to the line $\mathrm{x}-5 \mathrm{y}+10=0$.
19. Two concentric circles are expanding in such a way that the radius of inner circle is increasing at a rate of $4 \mathrm{~cm} / \mathrm{sec}$ and that of the outer circle at a rate of $1.5 \mathrm{~cm} / \mathrm{sec}$. Is the area between the circles increasing or decreasing when the inner and outer circles are 5 cm and 8 cm . And how fast?

$$
\begin{equation*}
\text { Group ' } C^{\prime}[8 \times 3=24] \tag{2}
\end{equation*}
$$

20. (a) Prove that $\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\ldots \ldots \ldots=1-\log _{\mathrm{e}} 2$
b) Using De Morgan's theorem find the value of $(1-\mathrm{i} \sqrt{3})^{6}$.
c) Using mathematical induction, prove that $1+3+5+\ldots+(2 n-1)=n^{2}$
21. a) Find the equation of tangent to the circle $x^{2}+y^{2}-6 x+8 y-4=0$ at $(8,6)$.
b) Find the condition that the line $l x+m y+n=0$ is tangent to the circle $x^{2}+y^{2}+2 g x+$ $2 f y+c=0$.
c) Find the equation of parabola whose vertex is at $(3,2)$ and the focus is at $(5,2)$.
22. a)Define integral of the function $f(x)$ w. r. t. x
b) Write the integral of $\int e^{a x} \sin b x d x$
c) Integrate the following
i) $\int \frac{d x}{1+\sin x+\cos x}$
ii) $\int \frac{x+1}{(x-4)(x+2)} d x$

	The Times Secondary School
Dillibazar, Kathmandu	

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate the full marks.

Attempt all the questions.

Group-A $[11 \times 1=11]$

Rewrite the correct option in your answer sheet.

1. Of the numbers formed by using all the figures $1,2,3,4,5$ only once, how many are even?
a) 24
b) 36
c) 48
d) 96
2. The sum of the binomial coefficients in the expansion of $(1+x)^{n}$ is
a) 2 n
b) 2^{n}
c) n !
d) n^{2}
3. Sum of the squares of the first n natural numbers is
a) n^{2}
b) $\frac{n(n+1)(2 n+1)}{6}$
c) $\frac{n(n+1)}{2}$
$\mathrm{d}\left(\frac{n(n+1)}{2}\right)^{2}$
4. The center of the circle $x^{2}+y^{2}+4{ }_{x}^{6}-6 y+4=0$ is
a) $(-2,-3)$
b) $(2,-3)$
c) $(-2,3)$
d) $(2,3)$
5. The system of equations $x-2 y=5$ and $k x+6 y=9$ have no solutions when k equals
a) -2
b) 2
c) -3
d) 3
6. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sec 7 x}{\sec 5 x}$ equals
a) $\frac{7}{5}$
b) $-\frac{7}{5}$
c) $\frac{5}{7}$
d) $-\frac{5}{7}$
7. The derivative of $\log (\tanh x)$ is
c) $2 \operatorname{cosech} 2 x$
d) $\operatorname{sech}^{2} x$
8. The integral of $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}$ is
a) $\log \left(x+\sqrt{x^{2}-a^{2}}\right)+c$
b) $\log \left(x-\sqrt{x^{2}-a^{2}}\right)+c$
c) $\log \left(x+\sqrt{x^{2}+a^{2}}\right)+c$
d) $\sin ^{-1} \frac{x}{a}+c$
9. The correlation coefficinet ' r ' between two variables lies between
a) $-\infty \leq r \leq \infty$
b) $-1 \leq r \leq 1$
c) $0 \leq r \leq 1$
d) $0 \leq r \leq \infty$
10. If α and β be two complex roots of unity then α^{-1} equals
a) 1
b) 0
c) α
d) β
11. For two dependent events A and $B, P(B / A)$ equals
a) $\frac{P(A \cap B)}{P(A)}$
b). $P(A) P(B)$
c). $\frac{P(A \cap B)}{P(B)}$
d) $\frac{P(A)}{P(A \cap B)}$

Group ' B ' $[5 \times 8=40]$
12. (a) In how many ways can the letters of the word "CALCULUS" be arranged so that two C's do not come together. [3]
b) How many committees of 3 men and 2 women can be formed from 12 men and 8 women? [2]
13. a) Define Eulers number. [1]
b) Show that $1+\frac{1+2}{2!}+\frac{1+2+3}{3!}+\frac{1+2+3+4}{4!}+\ldots \ldots \ldots$ to $\infty=\frac{3 e}{2}$.
14. Solve the system of equatiions: $x-y+z=-3, \quad x+y+z=1,3 x-4 y-z=1$
by Row-equivalent matrix method or Cramars Rule.
15. Find the coefficient of correlation by Karl Pearson's method.

X	6	2	10	4	8
Y	9	11	6	8	7

16. Solve the following LP Problem, using simplex method

Maximize $Z=5 x-3 y$ subject to $3 x+2 y \leq 6, x-3 y \leq 4, x, y \geq 0$
17. a)Define L'Hospital's Rule and use it to evaluate $\lim _{x \rightarrow \theta} \frac{\tan b x}{\operatorname{tancx}}$
b) Find the derivative of $\sinh x \cosh x$
18. a) Write the equation of normal to the curve $y=f(x)$ at piont $\left(x_{1}, y_{1}\right)$ in differential form.
b) Define the angle of intersections between two curves.
c) Find the point on the curve $2 y=3-x^{2,}$ the tangent at which is parallel to the line $x+y=0$
19. An inverted cone has depth of 40 cm and a base of radius 5 cm . Water is poured into it at a rate of 1.5 cubic centimeters per second. Find the rate at which the level of water in the cone is rising when the depth is 4 cm .

$$
\begin{equation*}
\text { Group ' } C \text { ' }[8 \times 3=24] \tag{3}
\end{equation*}
$$

20. (a) If the coefficient of x in the expansion of $\left(x^{2}+\frac{k}{x}\right)^{5}$ is 270 find k.
(b) Using De Morgan's theorem find the value of $(1+i)^{20}$.
c) Using mathematical induction, prove that $2+4+6+\ldots+2 n=n(n+1)$
21. a) Find the equation of tangents to the circle $x^{2}+y^{2}-2 x-4 y+3=0$ at $(2,3)$.
b) Prove that the straight line $y=x+a \sqrt{2} x$ touches the circle $x^{2}+y^{2}=a^{2}$. Also, find the point of contact.
c) Find the equation of parabola whose vertex is at $(5,3)$ and the focus is at $(5,6)$.
22. a)Define integral of the function $f(x)$ w. r. t. x
b) Write the integral of $\int \sqrt{x^{2}+a^{2}} d x$
c) Integrate the following

$$
\begin{array}{ll}
\text { i) } \int \frac{d x}{\sin x+\cos x} & \text { ii) } \int \frac{x-1}{(x-2)(x+1)} d x
\end{array}
$$

